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Learning Objectives

Write the dual program of a linear
program.
Understand the duality theorem.



Example

Recall our first example:
Maximize 200M + 100W subject to:

W ≥ 0.
100 ≥ M ≥ 0.
W ≥ 2M .
100, 000 ≥ 200(W − 2M) + 600M .



Upper Bound

The best you could do was 60000, but we
proved it by combining constraints

100 · [ 001 ·M + 000 ·W ≤ 100]
+0.5 · [ 200 ·M + 200 ·W ≤ 100, 000]

200 ·M + 100 ·W ≤ 60, 000.



General Technique

Try to prove bound by combining the
constraints together.



Linear Program
Say you have the linear program where you
want to minimize

v1x1 + v2x2 + . . . + vnxn

subject to constraints

a11x1 + a12x2 + . . . + a1nxn ≥ b1

. . .

am1x1 + am2x2 + . . . + amnxn ≥ bm



Combine Constraints
If we have ci ≥ 0, we can combine
constraints:

c1 · [a11x1 + a12x2 + . . . + a1nxn ≥ b1]

. . .

+cm · [am1x1 + am2x2 + . . . + amnxn ≥ bm]

w1x1 + w2x2 + . . . + wnxn ≥ t,

wi =
∑︀

cjaji , t =
∑︀

cjbj .



Bound

If wi = vi for all i , have

v1x1 + v2x2 + . . . + vnxn ≥ t.

Want to find ci ≥ 0 so that vi =
∑︀m

j=1 cjaji
for all i , and t =

∑︀m
j=1 cjbj is as large as

possible.



Bound

If wi = vi for all i , have

v1x1 + v2x2 + . . . + vnxn ≥ t.

Want to find ci ≥ 0 so that vi =
∑︀m

j=1 cjaji
for all i , and t =

∑︀m
j=1 cjbj is as large as

possible.



Linear Program

Note that this is another linear program.
Find c ∈ Rm so that

∑︀m
j=1 cjbj is as large as

possible, subject to the linear inequalities
ci ≥ 0, and equalities

vi =
m∑︁
j=1

cjaji .



Dual Program

Definition
Given the linear program (the primal):
Minimize v · x
Subject to Ax ≥ b

The dual linear program is the linear
program:
Maximize y · b
Subject to yTA = v , and y ≥ 0.



Bounds

It is not hard to show that a solution to the
dual bounds the optimum for the primal.

If y ≥ 0 and yTA = v ,
then for any x with Ax ≥ b,

x · v = yTAx ≥ yTb = y · b.

The surprising thing is that these two linear
programs always have the same solution.
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Duality

Theorem
A linear program and its dual always have
the same (numerical) answer.

This means that one can instead solve the
dual problem. This is sometimes easier, and
often provides insight into the solution.
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Example: Flows
The size of our flow is∑︁

e out of a source

fe −
∑︁

e into a source

fe.

By adding multiples of the conservation of
flow equation, this is

∑︁
v

cv

(︃ ∑︁
e out of v

fe −
∑︁

e into v

fe

)︃
where cs = 1, ct = 0.
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Example: Flows

This is ∑︁
e=(v ,w)

(cv − cw)fe.

We can bound this using capacity constraints
as ∑︁

e=(v ,w)

Ce max(cv − cw , 0).
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Example: Flows

It is not hard to show that minimum attained
when cv ∈ {0, 1}.

Letting 𝒞, be the set of vertices where
cv = 1, our bound is∑︁

e=(v ,w),v∈𝒞,w ̸∈𝒞

Ce = |𝒞|.

The dual program just finds the minimum
cut!
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Example: Diet Problem

Recall the diet problem:

Minimize the cost of the foods you need
to buy subject to:
Meets daily requirements for various
nutrients
Non-negative amount of each type of
food

What is the dual program?
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Example: Diet Problem

For each nutrient N , use a multiple CN of
the equation for that nutrient.
Can then add multiples of the constraint that
you get a non-negative amount of each food.



Example: Diet Problem
Think of CN as a cost of nutrient N . We pick
values so that for each food item, f , we have

Cost(f ) ≥
∑︁
N

CN ·(Amount of nutrient N in f ).

Costs CN to get a unit of nutrient N . This
means total cost of a balanced diet is at least∑︁

N

CN · (Required amount of nutrient N).
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Observation

Note that if you want to actually obtain this
lower bound, you cannot buy overpriced
foods. Can only afford to buy foods with

Cost(f ) =
∑︁
N

CN ·(Amount of nutrient N in f ).

This is an example of a general phenomena
called complementary slackness.



Observation

Note that if you want to actually obtain this
lower bound, you cannot buy overpriced
foods. Can only afford to buy foods with

Cost(f ) =
∑︁
N

CN ·(Amount of nutrient N in f ).

This is an example of a general phenomena
called complementary slackness.



Complementary Slackness

Theorem
Consider a primal LP:
Minimize v · x subject to Ax ≥ b,
and its dual LP:
Maximize y · b subject to yTA = v , y ≥ 0.
Then in the solutions, yi > 0 only if the i th

equation in x is tight.



Problem
Assuming that the highlighted point is the
optimum to the linear program below, which
equations might have non-zero coefficients in
the solution to the dual program?



Solution
Only 2 and 4.



Summary

Every LP has dual LP.
Solutions to dual bound solutions to
primal.
LP and dual have same answer!
Complementary slackness.


